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A M E T H O D  F O R  S O L V I N G  T H E  H E A T  C O N D U C T I O N  

P R O B L E M  F O R  C O N T I N U O U S L Y  D I S C R E T E  R O D  
S Y S T E M S  

V. P. Kravchenko and N. I. Shut UDC 512:536.2 

W e  propose  a m e t h o d  for  solving problems f o r  thermal  processes  in complex  con t inuous ly  discrete structures. 

One-dimensional boundary-value problems of heat conduction theory with a continuously discrete 

distribution of thermophysical parameters are of great practical interest, since problems of heat transfer play an 
important role in the development of many fields of modern technology. 

The considerable growth in the power of energy devices with the simultaneous decrease in their dimensions 

(for example, in space exploration) increases the importance of studying thermal processes in complex systems. 
Moreover, the reliability of operation and the stability of functioning of various devices are directly determined by 
thermal processes. 

In view of this, so-called continuously discrete boundary-value problems are of particular current interest, 

due to the need to perform thermal calculations for composite media. Continuosly discrete boundary-value problems 

represent a mathematical model for investigating the phenomenon of heat transfer in those cases when the physical 

parameters of the medium under study are not constant for the entire region of its determination, but depend on 
the coordinates. 

We suggest an approach to the solution of such problems when at the boundary between subregions 

conjugation conditions are introduced that determine certain dependences for the temperature or heat flux. This 
allows one to reduce the problem to a number of disconnected boundary-value problems. 

Let us consider the heat conduction problem for a rod element with a thermally insulated lateral surface 

of length l that consists of n parts with different thermal conductivity coefficients 2i(x)  (i = 1, n) connected by 

n - 1  discrete elements. In this case, the thermal conductivity coefficient 2 (x), the specific heat c(x ) ,  and the density 

p (x) are piecewise continuous functions. Moreover, we assume that at a number of points in the rod x = xi (i = 

1, n -1 )  there are concentrated elements of mass m i with thermal conductivity coefficients 2i (i -- 1, n - 1 )  and 

concentrated heat capacities ci (i -- 1, n -1 ) .  

The differential heat conduction equation will be written as 

o--7 (x)  - p r (x )  = o ,  (1)  

x E G = (0, l) E R 1 , G i = (Xi_ 1, Xi) C G ,  

x o = O ,  x n = l ,  i =  1, n ,  t ~ O .  

This equation must be satisfied over the sections of the rod between the discontinuity points of the functions 2(x), 

c(x) ,  and p (x). Suppose the discontinuities of these functions coincide with the points of application of concentrated 

inclusions m i. If there are no concentrated inclusions at the points of discontinuity of the functions, it is necessary 

to set the corresponding value of mi equal to zero. The assumption of coincidence between the discontinuities of 
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the functions Jl (x), c(x),  and p (x) does not restrict the generality of problem solution, since otherwise the magni tude 

of the discontinuity of a function which is continuous at a given point could be considered to be equal to zero. 

In addit ion to differential equation (1), functions T(x ,  t) must satisfy at points x -, xi conjugation conditions 

of the form 

Ti+ 1 (x i, t) = T i (xi, t) , 
(2) 

OTi+ 1 (x  i, t) OT i (x i, t) m f i  OT i (x i, t) 

Ox Ox ---~i Ot ' 

i =  1, n -  1. 

The first of the conjugation conditions determines the property of continuity of the solution, and the second, the 

jump of the derivatives. The  second condition can be obtained by integrating heat conduction equation (I) over 

intervals [x i - e, xi + e ] and proceeding to the limit when e - ,  0. Actually, 

]t ) xi+e xi+e OT OT OT 
f Tx (x)-~x dx= f p(x) c (x ) -~dx .  

xi-e x i -e  

Integrating the lef t -hand side, we obtain 

dT ] xi+e xi+e dT 

I = f p(x) c (x) -~dx.  

On the basis of the theorem of the mean, the r ight-hand term of this equality, in view of the continuity of the 

derivative OT(x, t ) / d t ,  can be represented as follows: 

xi+~ OT OT (x*, t) xi+" 
f p (x) c (x) - ~  dx  = Ot f 

xi-e xi-e 
p (x) c (x) dx, 

where the integral of the density (of the volumetric mass) p (x )  determines the den~,ty (volumetric mass) of the 

portion of the rod in the interval (xi - e, xi + e), and x* is a certain mean point of the same interval. Within the 

limit for e --, 0, we have 

xi+e �9 
lim OT t~x*, t) f p (x) c (x) dx  = mic i oT  (x ' t) 
e-, 0 Ot Ot xi-e 

because the density (volumetric mass) of the portion is degenerated into a concentrated densi ty (mass) at the point 

x = xi. In the limiting case we finally obtain the second of the conditions of conjugation (2). 

Without disturbing the generality of the proposed method of solution, as boundary  conditions we will take 

the conditions of free heat exchange with an external  medium of zero temperature.  Then  the boundary  conditions 

will be written in the form 

OT (x, t) (3) 
X = O: h i T ( x ,  t) =~.1 Ox ' 

x = l : hnT (x, t) = - 2  n OT (x' t) 
Ox ' 
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where hi and  h n are the coefficients of external  heat conduction a n d / l l  and an are the  thermal  conductivity 

coefficients of the portions of the rod at the ends x = 0 and x = l. 

To  solve boundary-value problem ( I ) - (3) ,  we apply the method of separation of Fourier  variables and seek 

a solution in the form 

T (x, t) = X (x) ,t, ( t ) .  (4) 

Substituting Eq. (4) into Eq. (1), we obtain two equations 

d e  (5) 
d t +  t~ = O, 

o 
d x  ( x ) -~x + = ' 

where co 2 is an arbi t rary  constant. 

Since there is no exact solution for ordinary differential equations with variable coefficients (except for 

particular cases), then to solve Eq. (6) we replace the functions/l  (x), p (x), and c(x) by their  mean values at each 

of the portions. In this case we assume that in the intervals [xi- l ,x i  ] these functions are ra the r  smooth: 

1 xi 1 xi 
= f p (x) d x ,  f /1 (x)  d x ,  ~ i  - xi  _ xi  - l xi_ 1 -~i Xi -- Xi-- 1 xi_ 1 

1 xi 1 xi 
- f /1' (x) dx .  = f c ( x )  d x ,  "~i' x i - x i - l x  i_l -Ci Xi -- x i -  1 xi_ 1 

As a result, we arrive at differential equations with constant coefficients: 

"~i d2Xi  - '  dXi  
+ /1i + ~ 

dx 2 dx 
= 0 ,  (7) 

x E G = (O, I) C R i, G i= (xi_ i, xi) c G , 

x0=0, xn=l, i= l,n. 

With allowance for Eq. (4), conjugation conditions (2) can be written as: 

Xi+ l (% co) = x i (% oJ), (8) 

, mic  i 
Xi+l  ( x .  o9) -- X I ( x .  o9) = - ~ , 2 X  i ( x i , C o ) ,  i = 1, ,~ -- 1 .  

The  boundary conditions take the form 

x = 0 : h~x~ (x) - ~ x ' ~  (x) = 0 ,  x = t:  h . x n  (x) + ~nX'n (x) = 0 .  (9) 

To solve boundary-value  problem (?)-(9) ,  we will use the method of normal fundamental  systems of 

solutions [1 ]. The  characteristic equation for Eq. (7) will have the roots 
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Pi ci Pi ci ) 

2 ~  
Pi ci 

(10) 

We introduce the following notation: 

ri = -- _ , rti = 
2 2  i 

~/2"i/~) 2-4-~-~/- w2/ 
Pi ci } 

2 2"i 

Pi ci 

Then the normal fundamental  system of solutions will be written as 

~o~i!l (x, to) = exp (rix) cos n i ( x  - X i_ l )  , ~,~2i!l (x, to) - 
exp (rix) 

n i 
sin n i ( x  - x i _ l )  , 

~o (0 (x ,  to) = n i exp (r i x )  sin n i ( x  Xi_l) , ~o~i!2 (x, to) exp (r i x )  cos n i ( x  x i _ l )  . 1,2 --  ---- - -  

(11) 

A general solution of Eq. (7) with the help of system (11) will be obtained in the form 

xi (x, co) = c ?  ^(0 (~, to) + c~0 .r (~, to) ~1,1 Y"2,1 , 

xl (x, to) -- c ?  (x, to) + A'?2 (x, to) Y" 1,2 

(12) 

x ~ G =  (O, I )  C R  1 G i =  (x i -1  xi) C G ,  i = ]  n 

Since system of solutions (11) is a normal fundamental  system, we can write 

c~ ~ = x,  (x,_~, to), c~ ~ = xl (X;_l, to). (13) 

With allowance for Eq. (12), from conjugation conditions (8) and relations (13) we have 

c ( i + I )  C? ) ~tl) 1 (xi, 60) d- C~ i) ~(2i!1 (xi ,  t o ) ,  1 = 

c ( i + I )  C ?  ~?i)2 (xi, 09) -t- C(2 i) ~(i) (xi, o 9 ) -  - -  2 = ~'2,2 

2 
mict ~ -(i+ l)  

/ ~ -  C 1 i =  1, n -  1. 

(14) 

From boundary condition (9) at x = 0, taking into account Eqs. (11) and (12), we obtain 

c? ) = ~A c ?  (is) 
hl  

From this relation we conclude that all subsequent coefficients Ct 0 and C~/) (i ffi 1, n) can be expressed in terms of 
the coefficient c~l): 

(16) 
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where uli!2 and u~?2 are as yet unknown coefficients; moreover, it is evident that 

u(D 21 , (I) 1 (17) 
1,2---- ~ ,  ~2,2 = �9 

Substituting Eq. (16) into Eq. (15) and equating the expression at the coefficient c~ 1), we obtain recurrence 
relations for determing the coefficients: 

( i+O . (0 . ( 0  (xi ,  co) + �9 (0 . ( 0  (xi ,  co) Ul,2 = Ul,2 ~Vl,l u2,2 ~2,1 , 

2 
( i+ I )  U(O ~0~i!2 (Xi, CO) + (0 (i) (Xi, co) mic,~ (i+1) u2,2 = 1.2 u2, 2~o2, 2 -- ~ U l ,  2 , i = 1, n -- 1 . 

( 1 8 )  

Thus, the general solution of boundary-value problem (7)-(9) will be written in the form 

= c ~ z l )  f ( o  " �9 " ] (x, co)+ 4'?2 A'?, (x, co)  -- Xi (x, co) 

= C (1) ru (0  (x -- Xi_l) + U (o ] (19)  L 1,2 exp (r  i x )  cos n i 2,2 exp (r  i x )  sin n i ( x  - X i _ l )  . 

Function (19) will satisfy conditions (9) not at all values of co, but only at the certain so-called eigenvalues 

of wk. To determine these values, from the second boundary condition (9) at x = Xn = l we obtain the following 

equation: 

ru(,,) <, X n - I  ) + , (n) (l Xn_l) ha L 1.2 exp (rnl) cos n n - "2,2 nn exp (rnl) sin n n - - 

[U (n) (l Xn-1) + "2,2 exp (rnl) COS n n ] - x. L 1,2 nn exp (rnl) sin n n - . (n) (l  - X n _ l )  = 0.  (20) 

The eigenvalues of co/c are found as roots of Eq. (20). Consequently, the solution of boundary-value problem 

(7)-(9) is determined by formula (19) with allowance for Eq. (20). 

From Eq. (5) for each value of co/~ we have 

~ k  (t) = B k exp ( -  co~t) , 

where Bk are constants. Then the solution of initial boundary-value problem (1)-(3) for each eigenvalue of cok will 

be determined by 

~i )  (x, t, cok) = x~ i) (x, cot) ~/, (t, cot) = 

Z k exp ( -  co~t) [u~i!2 exp (r i x ) c o s  n i ( x  - X i _ l )  + 

+ u (i) ] 
2,2 ni exp (r i x) sin n i (x -- Xi_l) , 

where A k = BkC~ 1) are constants. 

(21) 

(21) 

We will seek a general solution of boundary-value problem (1)- (3) in the form of a superposition of solutions 

T (i) (x, t) = ~ A k exp (- co~t) X~ i) (x, cok). (22) 
k=I 

Assigning the initial condition as 
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r (x, o) = x (x ) ,  x (x) e c 2 ( ~ ) ,  (23) 

and allowance for Eq. (22), we can write 

• Ak X(k 0 (x, Wk) = ~ (x). (24) 
k = l  

Consequently, the coefficients of the series can be calculated by the Fourier formulas, since equality (24) represents 

an expansion of the function x(x) into a series in an orthogonal system of functions 

x k (x, o~k). 

Preliminarily, we note the following: if we considered a continuous boundary-value problem for Eq. (l) 

and boundary conditions (3), the orthogonality condition for the functions Xk(x) would have the form 

l 
f p (x) X,, (x) X,,, (x) dx = O. 
0 

For continuously discrete boundary-value problem (1)-(3), orthogonality condition takes the following form 

[2 l: 

l n - - I  

f p(x)  X n(x) x m(x) dx+ ~ m i x  n(xi) x m(xi) = 0 .  
0 i--1 

Taking the above into account, we find that 

A k = 

l n- I  
f x (x)p (x) Xi, (x) dx + ~ x (xi) miX k (Xi) 
0 i= l (25) 

l n - I  
2 f p (x) X~ (x) dx + ~ X/, (xi) 

0 i=l 

So, considering Eqs. (21), (22), and (25), the solution of the continuously discrete boundary-value problem of heat 

conduction will be finally written as follows: 

T (x, t) = 
k=l 

l n - - I  

f tr p (x) X k (x )  dx + Z tc(xi) miX  k(x i )  
0 i=1 

l tt--I 2 2 
f p (X) X k (X) ax + ~ miX k (xi) 
0 i = l  

X 

Ft,-~ q 

where the coefficients uli!2 and u~i!2 are determined from recurrence formulas (18). 
Thus, the proposed method makes it possible to investigate thermal processes in complex continuously 

discrete structures. In contrast to other methods, the computation is virtually independent of the number of discrete 

specific features over the integration interval. For example, the order of characteristic equation (20) does not depend 

on the number of discrete parameters, but only depends on the boundary conditions of the problem. Recurrence 
formulas (18) remain the same for all of the basic types of boundary conditions. The method is convenient for 

programming and computer application. 
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N O T A T I O N  

~li(x), ci(x), pi(x), Ti(x, t), thermal conductivity, heat capacity, density, and temperature of the i-th portion 
of the rod; mi, mass of the i-th concentrated discrete element; ~ ,  ~/, p~, average values of the thermal conductivity, 

heat capacity, and density of the i-th portion of the rod; hi and h2, coefficients of external thermal conductivity at x 
ffi 0 and x ffi l, respectively; ~l and ~ln, thermal conductivity coefficients of the first and the last portions of the rod at 

points x u 0 and x ffi l; ~l i and ci, thermal conductiw,y and heat capacity of the i-th concentrated element; C2(G), 
Hilbert space of doubly differentiable functions. 
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